Gaussian basis sets for transition metals of the second series

Alain Veillard and Alain Dedieu

E.R. no. 139 du CNRS, Institut Le Bel, Université L. Pasteur, 4 rue Bl. Pascal, F-67000 Strasbourg, France

A Gaussian basis set consisting of (15s, 9p, 8d) Gaussian functions has been optimized for the transition metal atoms of the second series (fourth-row atoms).

Key words: Gaussian basis set-transition metals

1. Introduction

Three different basis sets are available in the literature for the second transition series (fourth-row atoms Y-Ag):

i) the (17, 11, 8) basis set by Huzinaga [1] corresponding to a (10, 6) basis set for the first-row atoms [2, 3];

ii) the (14, 8, 7) basis set by Hyla-Kryspin et al [4] corresponding to a (8, 4) basis set for the first-row atoms [5];

iii) the (12, 8, 7) basis set by Friedlander et al [6], corresponding also to a (8, 4) basis set for the first-row atoms.

A basis set which is commonly used for the first-row atoms is the (9, 5) basis set [2, 3] and its counterparts for the second- and third-row atoms, respectively (11, 7) [3] and (13, 7, 5) [4]. We report here the counterpart for the fourth-row atoms, a (15, 9, 8) basis set.

2. Computational details

Orbital exponent optimization was performed using an improved version of a program designed for atomic calculations [7], with the SCF energy minimized for the $5s^{1}4d^{n-1}$ configuration rather than for the ground state configuration [8].

Tab	ole 1. Orbital expe	onents							
	$Y(^{4}F)$	$Zr(^{5}F)$	Nb(⁶ D)	$Mo(^{7}S)$	Tc(⁶ D)	Ru(⁵ F)	$Rh(^{4}F)$	$Pd(^{3}D)$	$Ag(^{2}S)$
1s	374493.	395824.	418254.	445063.	468949.	498641.	529043.	553700.	591567.
	56210.9 17877 1	59421.2 13557 7	62796.4 14327 7	66291.5 15103 8	69948.1 15936 8	74529.5 16968 1	79287.7	83544.6 19097 6	88767.4 20216.0
	3644.92	3851.54	4072.79	4294.28	4529.16	4813.81	5122.75	5422.66	5723.93
	1194.29	1262.04	1334.42	1407.04	1483.30	1573.69	1672.37	1768.75	1863.66
	432.029	456.780	482.754	508.972	536.285	567.844	602.052	635.532	668.873
	165.877	175.528	185.457	195.484	205.891	217.563	230.048	242.381	254.847
	48.6088	51.8145	54.8260	57.9477	61.1720	64.7058	68.4977	72.2608	76.2401
	21.3732	22.8934	24.3452	25.7723	27.2729	28.9645	30.7801	32.5785	34.4583
	7.08176	7.78507	8.41912	8.96508	9.57435	10.3276	11.1335	11.9430	12.7964
	3.25305	3.58155	3.90743	4.18102	4.48242	4.83745	5.22261	5.57815	5.93991
	.827319	.965443	1.10518	1.15939	1.25294	1.37461	1.51547	1.61182	1.72810
	.397135	.454413	.521731	.547877	.583251	.639721	.705768	.747893	.776428
	.102034	.103369	.131698	.123139	.117961	.135109	.136677	.124876	.119263
	.035601	.038075	.042607	.043231	.042448	.044914	.045322	.043909	.042559
2p	2357.22	2530.75	2704.67	2877.75	3051.22	3222.59	3409.10	3596.49	3780.06
	557.996	598.809	640.048	681.115	722.242	762.956	807.084	851.448	894.994
	178.789	191.774	205.010	218.251	231.495	244.662	258.867	273.104	287.166
	66.2022	71.0051	75.9311	80.8912	85.8599	90.8281	96.1553	101.479	106.784
	26.4595	28.3887	30.3739	32.3873	34.4149	36.4561	38.6218	40.7975	42.9810
	9.35168	10.0901	10.8526	11.6348	12.4271	13.2295	14.0693	14.9218	15.7806
	3.65889	3.98693	4.32658	4.67659	5.03468	5.39976	5.78045	6.16894	6.56329
	.980921	1.09477	1.21234	1.33390	1.46010	1.58909	1.72236	1.85962	1.99958
	.341948	.384369	.427486	.471335	.517777	.564570	.612681	.661905	.711799
3d	214.062	229.701	245.941	261.731	277.813	295.409	313.108	329.835	347.579
	63.6321	68.2590	73.0679	77.8523	82.6562	87.9438	93.1723	98.3554	103.7120
	23.5322	25.2088	26.9880	28.7827	30.5901	32.5967	34.6090	36.5875	38.6386
	9.48360	10.1181	10.8282	11.5556	12.3002	13.1403	13.9978	14.8358	15.7090
	3.87463	4.10396	4.38937	4.69548	5.01829	5.39204	5.77972	6.16683	6.57046
	1.50949	1.55312	1.62869	1.72243	1.82958	1.97189	2.12882	2.28639	2.45686
	.432088	.490998	.544927	.598024	.644858	.703286	.765709	.828989	161798.
	100011	700001.	color1.	000//11	NC1061.	700017.	CI0107.	101007	7220171

216

The exponents of a Gaussian basis set are usually requested to minimize the SCF atomic energy of the reference state. However this criterion applied without discrimination may result in an overrepresentation of the inner shells to the detriment of the valence shells [4]. The solution consists of constraining the number of Gaussian functions used for the description of each atomic orbital (AO). These numbers were fixed to seven and five functions for the 1s and 2p AO's respectively, two functions for the others ns and np AO's, five and three functions for the 3d and 4d AO's respectively.

3. Results and discussion

Orbitals exponents are given in Table 1 for the atoms Y to Ag. For the sake of brevity, the corresponding expansion coefficients are not reported since they can be easily reproduced. The total energies for the lowest state of the $4d^{n-1}5s^1$ configuration are compared in Table 2 with the best results from Slater orbital calculations [9].

In order to use this basis set in SCF and CI calculations for organometallics of Tc and Mo we have introduced some supplemental basis functions:

i) Schaefer noticed that, in one of the basis sets for the first transition series, the basis functions describing the 3s and 4s shells are widely separated [10]. A similar situation is found here for the 4s and 5s shells, this being especially true at the end of the series. Therefore we tentatively added an additional s function with an exponent $\alpha_s = 0.2597$ for Mo and 0.2623 for Tc chosen according to the even-tempered criterion of Raffenetti and Ruedenberg [11] (namely the chosen s function is equidistant from the functions describing the outer part of the 3s and inner part of the 4s orbitals).

ii) Two new p functions were added corresponding to the 5p shells, with their exponents (0.1665 and 0.0588 for Mo, 0.1836 and 0.0651 for Tc) determined following the even-tempered criterion.

	GTO ^a	STO⁵
Y(⁴ F)	-3331.5220	-3331.6550
$Zr(^{5}F)$	-3538.8561	-3538.9957
Nb(⁶ D)	-3753.4378	-3753.5845
Mo([*] S)	-3975.3833	-3975.5338
Tc(⁶ D)	-4204.6077	-4204.7669
Ru(⁵ F)	-4441.3585	-4441.5264
Rh(⁴ F)	-4685.6930	-4685.8833
$Pd(^{3}D)$	-4937.6966	-4937.8815
$Ag(^{2}S)$	-5197.4933	-5197.6852

Table 2. Total energy (in a.u.) for the lowest state of the $4d^{n-1}5s^{1}$ neutral configuration

^a Uncontracted basis set (15, 9, 8) (this work).

^b Best results with Slater orbitals from Ref. [9].

iii) The need for an additional diffuse d function has been emphasized by several authors [8, 12, 13]. Here too the basis set was augmented with a diffuse d function according to the even-tempered criterion (the exponents of 0.0528 for Mo and 0.0578 for Tc are close to the respective values of 0.0432 and 0.0658 reported by Walch et al. [13]).

References

- 1. Huzinaga, S.: J. Chem. Phys. 66, 4245 (1977)
- 2. Huzinaga, S.: J. Chem. Phys. 42, 1293 (1965)
- 3. Huzinaga, S.: Approximate atomic functions. The University of Alberta: Technical Report 1971
- 4. Hyla-Kryspin, I., Demuynck, J., Strich, A., Bénard, M.: J. Chem. Phys. 75, 3954 (1981)
- 5. Whitman, D. R., Hornback, C. J.: J. Chem. Phys. 51, 398 (1969)
- 6. Friedlander, M. E., Howell, J. M., Snyder, G.: J. Chem. Phys. 77, 1921 (1982)
- Roos, B., Salez, C., Veillard, A., Clementi, E.: A general program for calculation of atomic SCF orbitals by the expansion method. IBM, San Jose, California: Research Report RJ 518 (1968)
- 8. Hay, P. J.: J. Chem. Phys. 66, 4377 (1977)
- 9. Clementi, E., Roetti, C.: At. Data Nucl. Data Tables 14, 177 (1974)
- 10. Brooks, B. R., Schaefer, H. F.: Mol. Phys. 34, 193 (1977)
- Raffenetti, R. C., Bardo, R. D., Ruedenberg, K.: in Energy, structure and reactivity, p. 164, D. W. Smith and W. B. McRae eds., New York: Wiley 1973
- 12. Roos, B., Veillard, A., Vinot, G.: Theoret. Chim. Acta (Berl.) 20, 1 (1971)
- 13. Walch, S. P., Bauschlicher, C. W., Nelin, C. J.: J. Chem. Phys. 79, 3600 (1983)

Received January 6, 1984